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Abstract. This paper discusses an algorithm for generalized convex multiplicative programming 
problems, a special class of nonconvex minimization problems in which the objective function is 
expressed as a sum of p products of two convex functions. It is shown that this problem can be 
reduced to a concave minimization problem with only 2p variables. An outer approximation algorithm 
is proposed for solving the resulting problem. 

Key words. Nonconvex minimization, global optimization, convex multiplicative function, outer 
approximation method. 

1. Introduction 

In this paper, we propose a practical algorithm for solving a generalized convex 
multiplicative programming problem: 

p 

minimize g(x) + i=IE fi(Y)gi(x) (1.1) 

subject to x E X ,  

where g, f ' s  and gi's are convex functions defined on R n and X C R n is a compact 
convex set. This problem has applications in computational geometry [8, 11] and 
VLSI chip design [14]. Also, as shown in [9], general quadratic programming 
problems can be put into this form. 

The problem (1.1) is a generalization of a convex multiplicative programming 
problem, i.e., a minimization of the product of convex functions over a convex 
set. The authors studied this type of nonconvex minimization problems in a series 
of articles [6, 7, 10, 12, 13]. In [6, 12], we treated a special case of (1.1) in which 
p = 1. We proposed a discrete approximation method [6] and a parametric 
successive underestimation method [12], and demonstrated that both of these 
methods can solve a fairly large scale problems. Also, the papers [1, 2, 15, 18] 
deal with this type of problems. 

The organization of this paper is as follows: in Section 2, we reduce the 
problem (1.1) into a 2p-dimensional concave minimization problem by intro- 
ducing auxiliary variables, and we look into the structure of the resulting 
problem. In Section 3, we construct an outer approximation algorithm. This 
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algorithm uses cutting planes exploiting the special structure of the problem. 
Results of computational experiments of this algorithm are reported in Section 4. 
In Section 5, we briefly discuss the applications of our method to nonconvex 
quadratic programming problems and generalized linear fractional programming 
problems. 

2. Reduction of the Problem into a 2p-Dimensional Concave Program 

Let us consider the generalized convex multiplicative programming problem: 

(P) 

P 

minimize f(x) = g(x) + ~ fii(x)gi(x) 
i=1 

subject to x E X ,  
(2.1) 

where g, f~, gi: Rn--->R 1 ( i= 1 , . . .  ,p)  are convex functions and X C R  n is a 
nonempty, compact and convex set. The product of two convex functions is not 
convex in general [7, 12], so that the objective function f need not be (quasi)con- 
vex. We assume in the sequel that 

fi(x)>O, gi(x)>O VxEX, i= l , . . . , p .  ( 2 . 2 )  

Let us note that, if f and gi are affine, then (2.2) can be assumed without loss of 
generality. To see this, let 

v i<min{min{ f (x )  l x E X } , m i n ( g i ( x ) l x c X } } ,  i = l , . . . , p ,  (2.3) 

a n d  d e f i n e  f / ( x )  = f//(x) - v i , g i (x )  = g i (x )  - v i a n d  ~ ( x )  = g ( x )  + Z iP=a [ v j i ( x )  + 

oigi (x  ) -- Op]. Then, 

P 

f(x) = ~,(x) + ~'~ f (x)~(x)  , (2.4) 
i=1 

where ~ and gi satisfy (2.2) and ~ is still convex. 
Let us introduce 2p auxiliary variables ffi, ~7i (i = 1 , . . . , p )  and define the 

following problem: 

I minimize 

subject to 

] P 

F(x, ~, 77) = g(x) + ~ ~=1 [~i(f'(x))2 + Yli(gi(x))2] 

x E X ,  
~7~ ~> 1, i = l , . . . , p ,  
(~,,)~>o, 

(2.5) 

where ff = ( ( a , . . . ,  ~p)t, r/= (~71,-.. ,~/p)'. The objective function F is continuous 
and bounded from below on the feasible region. Hence (2.5) has a finite optimal 
solution. 
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T H E O R E M  2.1. Let (x*, ~*,~7") be an optimal solution of  (2.5). Then x* is an 
optimal solution o f  (P) and fix*) = F(x*, ~*, ~?*). 

Proof. For an arbitrary x C X we have 

min{F(x, ~r, 7/)[ (irh ~> 1, i = 1 , . . . ,  p ,  (~, r/) ~> 0} 

1 ~ ,  . 2 1 
=g(x) + ~ ~ mlnf~/(f//(x)) +-~i (gi(x))2l ~i > O } 

i=1 
P 

= g(x) +  (x)gi(x) 
i=1 

by noting (2.2). [] 

This transformation (2.5) is an extension of the one proposed in [6] for a special 
case of (P),  in which p = 1. 

For any fixed (if, 7) ~> 0, let us consider a subproblem of (2.5): 

(P ( ( ,n ) )  
1 ~_~ ,li(gi(x) ) ] minimize F(x; ~, ~q) = g(x) + ~ .= [~i(f(x))2 + 2 

subject to x E X .  

(2.6) 

L E M M A  2.2. F(-; ~, 7) is a convex function for any (~, ~7) ~ O. 
Proof. Follows from Theorem 5.1 in [17]. [] 

We can obtain an optimal solution x*(~',n) of (P((,~/)) by using any one of 
standard convex minimization algorithms. Let 

a ( ( ,  7) = F(x*(r n), 7) .  (2.7) 

Then (2.5) is reduced to a problem of the 2p variables (~, 7): 

minimize G(~, 7) 
subject to ~??i ~ > l , i = l , . . . , p ,  (2.8) 

T H E O R E M  2.3. G is a concave function and satisfies 

G( ~" 1, "q t) ~ G(~" 2, '1~ 2) if (~ 1, T]I) ~ (~'2, '?/2) . (2.9) 

Proof. Since F(x,- , . )  is affine for any fixed x, the function G is the pointwise 
minimum of a family of affine functions. This implies that G is a concave 
function. The relation (2.9) is obvious from the definition. [] 
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3. An Outer Approximation Method for the Master Problem 

Let us proceed to the algorithm for obtaining a globally optimal solution (g*, ~7") 
of the concave minimization problem (2.8). 

We have the following lemma under the assumption (2.2): 

L E M M A  3.1. The set of optimal solutions of (2.8) is bounded. 
Proof. Let (g*, ~/*) be an optimal solution of (2.8). It is easy to see that there 

exists x* ~ X such that g* = gi(x*)/fii(x*) and 7/* =f(x*)/gi(x* ). Therefore,  both 
g* and ~7i are bounded,  because f and gi defined on R n * are bounded and positive 
valued on the compact set X. [] 

For i = 1 , . . . ,  p let ~. and ~i be lower bounds of g* and ~/*, respectively. Also let 

xIr = {(g,-q) E R p x R p t g??, ~> 1, i = 1 , . . .  , p ,  (g,~?) >-- 0} ,  (3.1) 

O o = {(g, r/) E R p x R p[g  ~< g ~<g, r/~<r/~<~}, (3.2) 

where 

( n l ' ' ' ' '  rip) t 

= ( l / n 1 , . .  �9 , _  1/_~pf, 
= ( 1 @ , . . . ,  l / ~ p )  t . (3.3) 

Then (2.8) is equivalent to the following: 

I minimize G(g,~7) (3.4) 
(MP) subjec t to  ( g , ~ / ) C ~ A O  0. 

The feasible region �9 710 o is nonempty, convex and compact. Therefore, we 
can apply an outer approximation method to (MP) with the initial relaxed 
problem: 

I minimize G(g, n) 
(Po) subject to  (g,~t) ~ O o .  

(3.5) 

Note that an optimal solution (g0, r/o) of (P0) is given by g0 =g, ~/0 =~,  since G is 
nondecreasing in each argument (Theorem 2.3). We need to solve a sequence of 
relaxed problems: 

minimize G(g, ~7) k = 1, 2, (3.6) 
(Pk) subject to (g,~7) E O k ,  " ' "  

such that O o D ~r D ~'~2 D ~ ~ ~ D ~t f N ~ 0 "  The kth approximation Ft k of �9 A O 0 is 
generated by adding some constraint lk_l(g, ~?)>10 to the system defining ftk_ 1 , 
i.e., 
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g~=f~ ,n{(r k = l , 2 , . . . .  (3.7) 

If an optimal solution ( ~ ,  ~7 ~) of (Pk) is a point of q*, then it is a globally optimal 
solution of (MP), and an optimal solution x*(~ ,r l  k) of (p(~,~/k))  solves the 
original problem (P). 

3.1 .  C U T T I N G  F U N C T I O N  

F o r i = l , . . . , p l e t  

xlti = ( ( ~ ,  rt i ) I  ~.r/,/> 1, (~', ,h i )  ~ 0 } ,  (3.8) 

(3.9) 

Then the feasible region ~ N f~0 of (MP) can be decomposed into the following 
form: 

I ,  n ao = (I,1 n •1o) X (1u 2 f l  f12o) X . . .  X ( %  n a,,o) �9 (3. ]0)  

To approximate It rq ~0,  we may approximate each ~I/i F)~'~i0 in the ~i'~i space. 
Let ( ~ ,  ~7 k) be an optimal solution of the kth relaxed problem (P~) and let 

( ~  7/lt)~argmin{~Til(~i,7/i)= k k , , ~ T p ) }  �9 ( 3 . 1 1 )  

We define the cutting function l k as follows: 

k k k k lk(~', ~7) = 2 - ~' tV~,/~' ,  - , t V ~ , * / r h  �9 (3.12) 

LEMMA 3.2. I f  (~,~Tk) kgaI t, then 

lk((,71)<~O V(~,~)Eq~ ' and /~(~,~Tk)>0.  (3.13) 

Proof. If (~, 7) E q~, then ~/~7i >I 1 for each i, and hence 

lk(C, ~7) ~< 2 - 2Vr~-,~/~? ~ / ~ .  ~7,vr~t k/~7~ ~< 0.  

Also we have 

/k(~e, ~Tk) = 2 -- 2W~r/~ > 0 ,  

~k k by noting tT~t < 1 .  []  

In the fft-~t space, the set {(~,, ~7,) I lk(~, ~1) = 0} is a supporting hyperplane of ~,  at 
k k k k ( ~ ,  W~ ~,/~t ), which is the intersection of the boundary of q~, and the ray 

emanating from the origin to the point ( ~ ,  ~t ~) (see Figure 2 in Section 3.4). 
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The normal of lk is orthogonal to every ff,-~ space except the ff~-~/~ space. If we 
define ~g+~ according to (3.7), it must be expressed as 

~'~k+l = ~'~I,k+1 X ~')2,k+l X " ' "  X ( ' ~ p , k + l  ' k = O, 1, 2 . . . ,  (3.14) 

where 12~,k+ 1 C R 2 is a polytope and satisfies 

~,~D~t,~+lD~,ns and ~ik=~i,k+l~iU~io,  i # t .  (3.15) 

In the whole space, the ray emanating from the origin to the point (~k, k) 
always intersects ~ fl ~0" The cutting function l k defined by (3.12) can also be 
derived from this property in the framework of the ordinary outer approximation 
method [3, 4]. 

3.2. A L G O R I T H M  

We are now ready to construct an outer approximation algorithm for solving 
(MP).  Let e/> 0 be a give tolerance. 

A L G O R I T H M  O A M  
Step O. Let k = 0. 

e k k Step 1. Compute an optimal solution (~,~7 k) of (P~) and let ~ / = ~ ,  

~Ti= V~qi /6i , i = l , . . . , P .  
Step 2. Let ( (~ ,  ~Ttk) E argmin{~?Tg ] (( / ,  ~7~) = ( ~ ,  ~7~),k . . . ,  (~p~,~p)}.~ If 

~k k ~< (3.16) 1 - ~ t T ~ t  ~ �9 , 

Step 3. 

Step 4. 

then stop. 
Let lk(~, ~7) = 2 - ~ - ~7~,. Update  the feasible region as ~2k+ 1 = fZ k A 

p x n 

Let k = k + 1 and return to Step 1. [] 

T H E O R E M  3.3 I f  �9 > 0, then Algorithm O A M  terminates after finitely many 
iterations and yields an approximate solutions (~,~7~). I f  �9 = O, then O A M  
generates a sequence {((k, ~/k)}, every accumulation point of  which is a globally 
optimal solution of  (MP). 

Proof. Assume that Algorithm O A M  is infinite. Then there exists a sub- 
sequence {((gq,~7~q)} such that 

v k q  kq 1 - ~  ~ > � 9  Vq, (3.17) 

where the index t is determined by (3.11). Since all (~'~, ~?k)'s are generated in the 
compact set ~0, we may assume that ( ( ~ %  ~?kq)} converges to some point (~,/ /) .  
Let  
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i(ff,~) = 2 -  r  �9 (3.18) 

For every q, we have (~kq+l, r/%+1)~ f~kq +1C f~% and hence l~q(~%+l, ~q~q+l)< 
0. Thus, 

~irn lkq(C kq+l , T~ kq+l) =~ in l  lkq(~ kq, kq) = l(~, ~) ~ O . 

However, by (3.18) we have 

l(~, #) = 2(1 - ~/~,*),) ~<0, 

which contradicts (3.17). If �9 > 0, therefore, OAM must terminate after finitely 
many iterations. If e = 0, then 

G(~, ~ ) =  lim G(~kq,~leq)<<-G(~*,~?*), 
q--+ +m 

because G(~ kq, 71 kq) ~ G(~*, 7/*) for every q. [] 

An approximate solution x*(~ ~, 7/~) of the original problem (P) can be obtained 
by solving (P(~,~/~)). If the stopping criterion (3.16) of Algorithm OAM is 
replaced by the following: 

G(g~, ~/") - G ( ~ ,  n ~) ~< e ,  (3.19) 

then we will obtain a globally �9 solution of (MP) and that of (P). If �9 > 0, 
we can prove the finiteness of the algorithm analogously as above. 

3.3. SOLUTION OF THE RELAXED PROBLEM 

We have to solve a relaxed problem (Pk) in each iteration of Algorithm OAM. 
Since (Pk) is a concave minimization problem, a globally optimal solution (~k, k )  
exists among the vertices V(ftk) of its feasible region ~k. Therefore we can find 
( ~ ,  ~7~) by solving (P(~, ~7)) for every (~, ~3) E V(~k). Let V k be the set of vertices 
newly generated by adding the constraint l~(~, ~7)~< 0 to the system defining fl~. 
Then we have 

v(a +x) = u n) e v(n ) I n) < o}. (3.20) 

The efficiency of the algorithm depends strongly upon the computation of V k . 
Recall that the feasible region O h of (P~) is the orthogonal product of polytopes 

12ik's defined in their respective ~i-rli spaces. Hence the vertices of gZ~ can also be 
expressed as follows: 

V(~-~k) ~-- V ( ~ l k  ) X V(~'~2k ) X ' ' "  X V(~'~pk). (3 .21)  
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P R O P O S I T I O N  3.4. ( ( L ,  rh) [ lk(f, r/) = 0} s u p p o r t s  xP" t f'l O t o .  

P r o o f .  The hyperplane { ( f t ,  r/t) [ lk(f, r/) = 0} supports ~t  and 

V a t / r / t ,  ~7-~-~k/~tk) �9 Since (fk,~7~) E l~0, it follows from (3.2) and (3.3) that 

k 
~_t < ;~ ~ < l /'rl, , rlt ~ ~l t < l @ . 

k k k k Thus, ( ~ ,  ~ )  is contained in fZto, and hence { ( f t , rb ) I lk ( f ,  ~/) = O} 
supports ~,  7/f~to- [] 

This proposition guarantees that redundant constraints cannot occur in each ~-~i 
k k space. Therefore ,  l k cuts off exactly one vertex ( f t ,  ~7 ) from tqtk and generates 

f~,.k+l with two new vertices, say ( f ; ,~ / ; )  and (ft,~71'). On the other hand, we 
have Oi,~+l = Fti~ for every i # t. Consequently, we have 

V k = V ( ~ ' ~ l k  ) ) �9 ~  X V ( ~ ' ~ t _ l , k )  

Iv tt 
x { ( f ; ,  r/;), (fit ,rh )} x V(f~t+1.~) x - . -  x V ( l I p k  ) . (3.22) 

Although [Vk[ might be a large number,  we can compute V~ without any expensive 
procedures.  

3 . 4 .  N U M E R I C A L  E X A M P L E  

Before  concluding this section, let us illustrate Algorithm O A M by using the 
following two-dimensional problem: 

minimize f ( x )  = 3x I ~ 4x 2 + (x l  + 2x  2 - 1.5)(2x 1 - x 2 + 4) 

q- (21 - -  2X 2 + 8.5)(221 + 22 -- 1) 

subject to 5x 1 - 8x 2/> -24 ,  5x 1 + 8x 2 ~< 44, 6x 1 - 3x 2 ~< 15, (3.23) 

4xl + 5 x  2 t >  10, x I / >  0 . 

We see from Figure 1 that 

1 ~<x 1 + 2x 2 -  1.5<~9, 
2 ~ < x l - 2 x 2 + 8 . 5 ~ < l l ,  

for all x in the feasible region X. 

1 ~ < 2 x l - x 2  + 4 ~ 9 ,  

1 ~ 2 X  1 ~ - X  2 - -  1 ~< 10, 
(3.24) 

Thus the assumption (2.2) is satisfied. The 
objective function value G( f ,  7/) of (MP) associated with (3.23) is given by solving 
a convex quadratic program: 

minimize F ( x ;  f , ~ )  = 3x I - 4x 2 + �89 + 2 x  2 - 1.5) 2 

+ rh(2x 1 - x 2 + 4) 2 + f2(Xl - 2x 2 + 8.5) z 

-4- " 0 2 ( 2 X l  -[- X 2 - -  1)21 (3.25) 
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X2 

zx -2z2  +8.5 = 0 j 

2xl - z2 +4  = 0 / (4,3) 

2xI +z2- I =0~ 

zl + 2x~ - 1.5 = 0 ~  

0 ~ ~ , , , ~ 2 . 5 , 0 )  > z, 

Fig. 1. Example (3.23) described in Section 3.4. 

subject to x E X .  

By (3.24) we define the bounds of ~z/*'s and ~}*'s below: 

~ 1 = 1  = 0 .111,  ~1 = 9 = 9 .000,  ~/1 = 1 = 0 .111,  ~ 1 = 9  = 9 . 0 0 0 ,  

_~2=1=0-091,  ~ 2 - ~ - 5 . 0 0 0 ,  2 2 = 2 = 0 " 2 0 0 ,  ~ 2 = ~ = 1 1 . 0 0 0 -  

Then the feasible region of the initial relaxed problem (Po) is as follows: 

~o = {(~1, ~/1) [ 0.1111 ~< ~1 ~< 9.000, 0.111 ~<T~I ~ 9.000) 

x {(~2,7/a) 10.091 ~< ~2 ~< 5.000, 0.200 <~ 7/2 ~< 11.000} 

(see Figure 2). The function G attains its minimum (~o,~/0) over ~o at 

(~1, ~2 ,Th ,~2) = (0.111, 0.091, 0.111, 0.200). 

The value of G at this point is 

min(F(x; 0.111, 0.091, 0.111, 0.200)Ix E X }  = -10.135 

(see Figure 3). Since 0.111.0.111 = 0.012 < 0.091- 0.200 = 0.018, we define 

/o(~, ~?) = 2 - X/0.111/0.111~" 1 - X/0.111/0.111~ h = 2 - ~1 - ~h �9 

Then we obtain the first approximation of T r ~o: 
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71 
t~(C,7) = o' 

9.000 

6.357 

\ 

1.889 
1.610 

0.Iii 
0 

,. i :"x 
i 0.390 1.889 N 

.111 

(~lr/t = 1 

),_ 
9.000 

to(C,,1) = o 

J~ 

ii.000 

h(C,,7) = o 
\ 

2.766 

0.200 

C1 
0 

L 
.091 1.2 5.000 

Fig. 2. Relation between the cut l+ and the set (]~. 

~7 F(::0.m,0.09t,~0).~I~LS~ = _ m a s  ~' 

~ , 4 . 0 6 3 )  

F(z; 1.889, D ~  z~ 

Fig. 3. Calculating G(~,~) for the example (3.23). 

D+I = ((~'1, ~,)  I ~'1 + rh ~> 2, 0.111 ~< ~'1 ~< 9.000, 0.111 ~< '}71 < 9.000} 

• { ( < ,  r/2) [ 0"091 ~< g'2 ~< 5.000, 0.200 ~ 2  ~ 11.000}. 

The constraint  21 + rh >~ 2 cuts the vertex (0.111, 0.091, 0.111, 0.200) f rom f~o 
and generates two new vertices of 111 (Figure 2): 

(b/ ' l ,  ~'2, ~ I  , n 2 )  

= (1.889, 0.091, 0.111, 0.200), (0.111, 0.091, 1.889, 0.200).  
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The values of G at these points are 

min{F(x; 1.889, 0.091, 0.111, 0.200) [ x ~ X} = -O.855, 

min{F(x; 0.111, 0.091, 1.889, 0.200) [ x E X} = -9 .246 ,  

respectively (Figure 3). Thus, an optimal solution (~1, */1) of the relaxed problem 
(P1) is (0.111, 0.091, 1.889, 0.200). Since 0.111.1.889 =0 .210>0.091 .0 .200  = 
0.018, we define 

11(~, */) = 2 - X/0.200/0.091~2 - X/0.091/0.200./2 = 2 - 1.483~2 - 0.674,/2, 

and 

~'~2 = {(~'1, */1) [ ~1 "}- */1 ~ 2, 0.111 ~< ~1 ~ 9.000,  0.111 <~ */1 ~ 9.000} 

x {(~'2, */2) 11.483~'2 + 0.674~'2 ~> 2, 0.091 ~< ~'2 ~< 5.000, 

0.200 ~<*/2 ~< 11.000}. 

Two vertices (1.889, 0.091, 0.111, 0.200) and (0.111, 0.091, 1.889, 0.200) are 
cut off and the following vertices are newly generated (Figure 2): 

(~1,  X2, */1, */2) = (1.889, 1.257, 0.111, 0.200), (0.111, 1.257, 1.889, 0.200), 

(1.889, 0.091, 0.111, 2.766), (0.111, 0.091, 1.889, 2.766). 

An  optimal solution (if2, */2) of the relaxed problem (P2) is (0.111, 1.257, 1.889, 
0.200) and its optimal value is -5.601. Since 0.111- 1.889 = 0.210< 1.257. 
0.200 = 0.252, we define 

12(~, */) = 2 - X/1.889/0.111~1 - X/0.111/1.889./1 = 2 - 4.123~" 1 - 0.243*/1 . 

We obtain ~'~3 by adding the constraint 4.123~'~+0.243./1~>2 to the system 
defining Ft 2. 

Two vertices (0.111, 1.257, 1.889, 0.200) and (0.111, 0.091, 1.889, 2.766) are 
cut off and four new vertices are generated (Figure 2): 

((a,  ~2, */1, */2) = (0.390, 1.257, 1.610, 0.200), (0.390, 0.091, 1.610, 2.766), 

(0.111, 1.257, 6.357, 0.200), (0.111, 0.091, 6.357, 2.766). 

An optimal solution (~3, */3) of (P3) is (0.111, 1.257, 6.357, 0.200) and its optimal 
value is -3.367. 

In this way, a sequence { ( ~ ,  ~ ) }  will be generated. Its accumulation point 
(~*, 77*) = (0.222, 0.800, 4.500, 1.250) is a globally optimal solution of (MP). We 
obtain an optimal solution x * =  (0.000, 3.000) of (3.23) and its optimal value 
-2 .5  by solving (3.25) with ~ = (*, 77 =77*. 
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4. Computational Experiments 

We report the results of computational experiments on the algorithm presented in 
the previous section. We solved two subclasses of the forms: 

t 1 t t P 

(TP1) minimize CoX + ~ x  Q Qx +i=1 ~ clxdlx 

subject to Ax>~b, x~O,  

(TP2) 

P 

minimize ~ clxdlx 
i = 1  

subject to Ax >! b,  x ~ > O ,  

where Co, ci , di E R n (i=l, . . . ,p),  Q E R nxn, A E R mxn and b E R m. All 

elements of c/s, di's, Q, A and b are randomly generated, whose ranges are 
[0, 100]. 

We solved every subproblem (P(ff, ~/)) by applying the reduced gradient method 
[19]. Direction vectors were generated by the conjugate gradient procedure [5]. 
The size of tolerance e was always fixed at 10 -5 and both the lower bounds s 
and ~i's were 10 -5. The algorithm was coded in C language and tested on a SUN 
SPARC-2 computer (27.5 MIPS). 

Table I shows the comparison of three algorithms for (TP1) when p = 1. Here 
OAM represents the algorithm presented in Section 3, and PSUM and DAM are 
the parametric successive underestimation method [12] and the discrete approxi- 
mation method [6], respectively. For each size of (m, n), the table contains the 
average CPU time in seconds and the average number of cuts (and their 
respective standard deviations in the brackets) needed for solving ten examples. 
Also the average number of vertices generated by cuts in the course of 
computation (and its standard deviation) is listed in it. This number corresponds 
to that of subproblems solved for one example. Both the results of PSUM and 

Table I. Results of three algorithms for (TP1) when p = 1 

m 10 30 30 70 70 130 130 
n 20 20 50 50 100 100 150 

Average CPU time in seconds (standard deviation) 
OAM: 0.5 1.9 8.7 27.9 83.5 288.2 

(0.1) (1.0) (4.o) (13.6) (28.7) (99.9) 
PSUM: 1.86 7.69 40.12 174,83 614,62 1002.81 
DAM: 0.99 3.26 16.42 55.46 229.65 511.42 
Average # of cuts (standard deviation) 
OAM: 8.9 10.6 10.5 10.2 8.1 11.7 

(3.5) (3,0) (2.7) (4.3) (3.4) (4.2) 
Average # of vertices (standard deviation) 
OAM: 15.8 19.2 19.0 18.4 14.2 21.4 

(7.0) (6.0) (5.3) (8.7) (6.8) (8.5) 

482.2 
(131.7) 

11.5 
(3.5) 

21.0 
(7.1) 
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Table II. Results of OAM for (TP1) 

p 2 2 2 3 3 3 
m 30 30 70 30 30 70 
n 20 50 50 20 50 50 

Average CPU time in seconds (standard deviation) 
7.0 56.2 183.8 421.4 536.0 2101.4 

(4.1) (43.0) (57.4) (1096.5) (193.1) (881.4) 
Average # of cuts (standard deviation) 

19.6 22.2 23.9 28.1 33.0 35.1 
(3.0) (3.8) (3.0) (2.9) (4.1) (5.2) 

Average # of vertices (standard deviation) 
212.8 270.8 308.8 2048.0 3193.0 3896.6 
(65.2) (96.9) (80.0) (625.0) (1089.4) (1816.5) 

DAM are taken from [12], in which their experiments were carried out on a SUN 
4/280S computer (8.5 MIPS). Tables II and III show the results of OAM for 
(TP1) and (TP2), respectively, when (p,m,n) ranges from (2,30,20) to 
(4, 70, 50). The average CPU time and the average numbers of cuts and vertices 
of ten examples for each (p, m, n) are listed in them. 

We see from these tables that Algorithm OAM is very sensitive to the size of p. 
Both the numbers of cuts and vertices generated through computation sharply 
increase as functions of p. As expected from (3.22), the latter is rather 
conspicuous for this tendency compared with the former. However, it should be 
emphasized that these numbers slowly increase for each p as the size of (m, n) 
gets larger. 

When p is fixed at a small number, say p ~< 3, OAM is reasonable efficient. In 
particular when p = 1, OAM solves (TP1) in about half computational time 
required by the parametric successive underestimation method (PSUM), even 
after taking the difference of their experimental environments into consideration. 
In this case, the total computational time is dominated by that needed for solving 
the associated convex quadratic program, i.e., (P(ff, 7/)). We have to devise more 
efficient algorithm for convex programs when the size of (rn, n) is larger. 

Table III. Results of OAM for (TP2) 

p 2 2 2 3 3 3 4 4 
m 30 30 70 30 30 70 30 30 
n 20 50 50 20 50 50 20 50 

Average CPU time in seconds (standard deviation) 
5.4 25.9 55.6 49.3 202.7 1087.7 416.5 3897.6 

(1.8) (5.1) (14.8) (33.1) (74.2) (900.4) (233.2) (2158.6) 
Average # of cuts (standard deviation) 

21.2 21.6 19.6 29.5 30.2 32.3 38.8 42.7 
(2.5) (1.8) (1.7) (4.0) (3.2) (5.2) (5.0) (5.6) 

Average # of vertices (standard deviation) 
246.2 253.0 206.6 2388.4 2509.8 3145.8 25088.8 36682.2 
(57.1) (41.1) (31.7) (1039.8) (770.8) (1475.8) (11591.6) (18355.2) 
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5.  S o m e  E x t e n s i o n s  

Let us consider a quadratic programming problem: 

(Qp) minimize f(x) = ctx + ~ x Ox 

subject to A x > l b ,  x>10, 

where c E R n, Q E R nx", A ~ R mxn and b E R m. 

(5.1) 

where ci , di E R n, Cio , dio E R 1, g: Rn--+ R 1 is convex function. If 

clx+Cio>O , d l x + d i o > O  V x ~ X ,  i = l , . . . , p  

we can transform (LFP) into the following equivalent problem: 

1 p 
minimize F(x, ~, rl) = g(x) + ~ i~=1 [;~g(clx + Cio) 2 + rh/(dlx + di0) 2] 

subject to x E X ,  

~ > 1 ,  i = 1  . . . .  , p ,  

~ > 0 ,  ~1~>0. 

(LFP) 

Thus (QP) can be put into the same form as (P). In this case, as shown in Section 
2, we can assume (2.2) without loss of generality. Therefore every quadratic 
program can be solved by Algorithm OAM. Similarly, we can apply OAM to 
bilinear programming problems: 

minimize ctx + dry + xtQy 

(BLP) subjectto A l x > ~ b l ,  x ~ O ,  (5.3) 

A z y ~ b  z , y>~O. 

Finally, let us consider a generalized linear fractional programming problem: 

P 

f(x) = ctx + ~ clx. dlx .  (5.2) 
i=1 

Proof. Follows from Theorem 2.2 of [9]. [] 

ClX -t- Cio 
minimize f(x) = g(x) + t 

i=l dix + dio (5.4) 
subjectto x ~ X ,  

(5.5) 

(5.6) 

LEMMA 5.1. I f  the rank of  Q is p (<-n), then the objective function o f  (QP) can 
be expressed by linearly independent sets o f  vectors, {Ca, . . . ,  cp}, { d l , . . . ,  dp) C 
R", as follows: 
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It is easy to check (see Theorem 4.2 of [6]) that a subproblem of (5.6): 

1 p t 2_1 - t minimize F(x; r ~7) = g(x) + -- ~ [~i(cix + Cio ) ~%/(d~x + d/0) 2] 
2 i = 1  

subject to x E X 

(5.7) 

is a convex minimization problem. Hence OAM can be applied to (LFP) as well. 
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